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The piston problem for a viscous heat-conducting gas is studiedunder the assump- 
tion that the piston Mach number 6 is small. The linearized Navier-Stokes 
equations are found to be valid up to times of the order of c2 mean free times 
after the piston is set in motion, while at large times the solution is governed by 
Burgers’s equation. Boundary conditions for the large-time solution are supplied 
by the matching principle of the method of inner and outer expansions, which 
is also used to construct a composite solution valid both for small and for large 
times. 

1. Introduction 
In the piston problem of gasdynamics, we consider an indefinitely long tube 

to be filled with a viscous, heat-conducting gas and fitted at  one end with a 
moveable piston. Initially the system is at  rest. The piston is then impulsively 
set into motion at constant speed into the gas. We seek to describe the resultant 
gas motion, which, neglecting the effects of the tube walls (or, alternatively, 
considering the piston to be infinite in its lateral dimensions), we approximate 
as one-dimensional. 

A physical description of the gas motion in the piston problem was given by 
Lagerstrom, Cole & Trilling (1949) (to whose report we shall subsequently refer 
as L.C.&T.) and by Lighthill (1956) on the basis of continuum theory. Immedi- 
ately after the piston is set in motion, they concluded, the action is dominated by 
viscous diffusion of the initially sharp gradients in the flow. That is, at  first 
the viscous terms in the Navier-Stokes equations are much more important than 
are the non-linear convective terms. Eventually, the gradients become small 
enough for the waveform-steepening effects of the non-linear terms to become 
comparable in strength to the viscous effects. The balance achieved between 
these opposing tendencies results in the formation of a shock wave which ulti- 
mately propagates steadily into the gas. 

In  this paper, we seek to fill in the above physical picture with mathematical 
details; at  present only the asymptotic behaviours of the solution for small and 
large time are known. Of course, the picture itself is valid only after the piston 
has been moving for a time large compared with the mean time spent by a gas 
molecule between collisions. That is, until the molecules which have struck 
the moving piston collide with the other molecules in sufficient numbers, the 
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continuum-flow assumptions which underlie the work of L.C. &T. and Lighthill 
cannot be justified. However, according to Lighthill, the time required for shock 
formation is a decreasing function of the shock strength; weak shocks do not 
form for many free times. If the shock strength (as measured by the piston Mach 
number, for example) is B, the number of collisions experienced by the average 
molecule before a shock forms is of order 1/G. Therefore, since the time required 
for transition from collisionless to continuum flow-which is certainly of the 
order of one mean free time-differs so widely from the time required for 
shock formation, by restricting our interest to weak shocks we can analyse 
the two phenomena separately. Here we choose to leave out the kinetic-theoretic 
effects.? 

The exact Navier-Stokes equations and boundary conditions for the piston 
problem are given in $2. These are linearized and solved by Laplace-trans- 
form techniques in 3 3. From the physical picture sketched above, we expect 
this linearized solution to be valid for relatively small times. Examination of 
the solution shows, as noted above, that the linearization breaks down after 
about 6-2 mean free times. This suggests a set of stretched co-ordinates in 
which the final stages of shock formation can be studied. Re-expansion of the 
equations in the new co-ordinates verifies the conclusion reached by previous 
investigators that the solution at large times is governed by Burgers’s equation. 
Boundary conditions on the large-time solution are now established by matching 
with the small-time solution, in the sense of the method of inner and outer 
expansions. The matching principle also yields a composite solution which is valid 
both for small and for large times. Our use of the matching principle is supported 
by analysis of a mathematical model of the piston problem as well as by the self- 
consistency of our results. 

It should be noted that the linearized Navier-Stokes equations for the piston 
problem and the related ‘shock-tube problem’$ have previously been treated 
by Roy (1914), Cagniard (194l), Possio (1943), L.C.&T., and Sirovich (1964), 
while Wu (1956) and Ai (1960) studied the fundamental solutions which give 
the response to heat and momentum sources. However, because of difficulties 
encountered in the evaluation of certain integrals, none of these investigators 
gives more than the leading terms of large- and small-time expansions of 
the solution. In  the present study, the complete expansions are found and 
evaluated. 

It must also be noted that L.C.$T., Lighthill (1956), and Hayes (1960) have 
all shown the Burgers equation to govern the final stages of shock-waveformation. 
Our contribution here is the use of matched asymptotic expansions, which 
not only simplifies the derivation, but also connects the large- and small-time 
solutions, and so permits the determination of a uniformly valid composite 
solution. 

t Moran (1965) attempted to calculate these effects on the basis of the linearized Krook 
equation. Laplace transforms were used to reduce the problem t o  the solution of certain 
pairs of simultaneous Weiner-Hopf equations, which unfortunately could not be inverted. 

$ That is, the boundary-free problem in which a one-dimensional flow starts from rest, 
with the density and pressure initially prescribed as step functions of the space co-ordinate. 
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2. Basic equations 

T defined as follows: 
We shall work in terms of dimensionless perturbation variables u, p ,  p ,  and 

U* =E,/(RT:)u, p - p ( 

p* = p:(1 +ep), T* * -  = Tt(1 : l+epp), + e T ) .  1 (2.1) 

Here u*, p*, p* and T* are the dimensional fluid velocity, density, pressure, and 
temperature, respectively; R is the gas constant; and e is a perturbation para- 
meter, defined so that u = 1 on the piston (i.e. e is proportional to the piston 
Mach number). The subscript zero denotes the initial (undisturbed) value of the 
variable. The longitudinal viscosity p*, defined by Hayes ( 1 9 6 0 )  as + the shear 
viscosity plus the bulk viscosity, is similarly non-dimensionalized: 

p* = &( 1 +ep). (2 .2)  

x* = { P a P : J ( R T 3 ) x  (2.3) 

The dimensionless independent variables x and t are defined so that 

is the distance into the fluid from the initial position of the piston, while 

(3.4) 

is the time after the piston is put into motion. It may be noted that this is 
tantamount to measuring distance and time in units of a molecule's mean free 
path and mean free time between collisions, respectively. 

In this nomenclature, the exact Navier-Stokes versions of the conservation 
equations for mass, momentum, and energy in a one-dimensional unsteady flow 
may be written 

(2 .5 )  

(2.6) 

pt+",+e(pu), = 0, 

u, +p, - u,, +€[put + uu, - (pu,),] +s2puux = 0, 

Ti + (Y - 1) ux - (?/a) Txx  +S[PT, +UTE + (Y - 1 )  PUX - (7 - 1)  uf - (rl4 (PTx)xl 
+ e 2 [ p u T X + ( y -  ~ ) ,UU;]  = 0. (2.7) 

Here y is the specific-heat ratio and cr is the Prandtl number based on the longi- 
tudinal viscosity (which Hayes 1960 calls Pr"), both of which are assumed con- 
stant. We also have the perfect gas law 

p = p + T + e p T .  (2 .8 )  

u = p = p = T = O  for x > O ,  t = 0 ,  (2-9) 

The initial conditions for the piston problem are 

while the boundary conditions at  the piston, which we take to be impermeable 
and adiabatic, are 

u = 1,  T, = 0 for t > 0, x = et. (2.10) 

u,p,T-+O for t > 0 as x - f o o .  (2 .11)  

Finally, we impose damping conditions at infinity, 

45-2 
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3. The linearized solution 
To begin with, we shall approximate the above equations by letting e + 0 

therein. The non-linear convective terms are then lost, but first approximations 
to the viscous terms are retained. According to the arguments quoted in 8 1, the 
resulting dolution may be expected to be good for small time. This we shall 
verify a posteriori. In the meantime, we shall give the variables associated with 
the linearized solution the superscript o (for ‘outer’; cf. Van Dyke 1964). 

Following L.C. &T. , we find it convenient to start our analysis of the linearized 
versions of (2.5)-(2.11) by taking their Laplace transforms with respect to time. 
Indicating the operation by a bar over the transformed variable, e.g. 

we obtain 

Here we have already used (3.5) and (3.2) to eliminate Po and i j O  from (3.3). 

order differential equation which may be put in the form 
Cross-differentiating (3.3) and (3.4), we find that U0 and Po satisfy a fourth- 

+ --- s2 for i = 1,2.  (3.9) i: 1”) 
The general solution of (3.8) for is of the form 

- 
u0 = al(s) e-d(hl)z + a2(s) e-d(hz)z + a3(s) e+d(h1)2 + a4(s) e+v(h2)Z. (3.10) 

From the damping condition (3.7), a3 = a, = 0, while the piston boundary con- 
dition (3.6) requires al+a2 = 1/s. Thus 

zo = a,e-d@I)Z+ (: _ _  a,) e-d(*2)z. (3.11) 

Similarly, we find T” = b 1 e-d(hi)Z - b 1 e-d(h , )X.  (3.12) 

To determine a, and b,, we substitute (3.11) and (3.12) back into either (3.3) 
or (3.4) and equate the coefficients of both exponentials to zero. Thus we obtain 

(3.14) 
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Finally, from (3.2) and (3.13), 

which completes the solution in the Laplace world. 
To return to the real world, we must evaluate contour integrals like 

u”(z,t) = -. UO(X, s )  estds, 
2na 8 4 ,  

(3.16) 

where 6 is real and sufficiently large that the singularities of the integrand lie 
to the left of s = 6. As was the case with our predecessors, this inversion problem 
is severely complicated by the form of the equation (3.9) for the hi’s which appear 
in (3.13)-(3.15). In the special case of unit longitudinal Prandtl number, how- 
ever, the radical in (3.9) can be eliminated, and we find 

(3.17) 

Thus, we have developed complete small- and large-time expansions of the 
solution for = 1, but have worked out only the leading term of the large-time 
expansion in the case of arbitrary Prandtl number. 

Details of the derivations are given elsewhere (Moran 1965). The general for- 
mulae for the asymptotic behaviour of the solution are found to be 

UO(X,  t )  N 6 erfc [(z - jyt)/&Pt)l+ O(t-*),l 
1 

pO(z, t )  N - uqz, t )  + O(t-i), 4r 

4Y 
TO(x, t )  N y-1 uqx, t )  + O(t-$), 

(3.18) 

where p.. 1 + ( y - l ) / a .  (3.19) 

The small- and large-time expansions of the linearized solution for a = 1 are 
rather lengthy, and so are relegated to the Appendix. From these expansions, 
time histories of the velocity, temperature and density profiles were constructed. 
The results for y = Q are shown in figures 1-3. 

The differences among the three profiles for small times contrast markedly with 
their similarity at large times. Also noteworthy is the definitely shock-like be- 
haviour of the solution at large times. That is, as can also be seen from (3.18), 
the flow properties eventually exhibit a smooth transition between differing 
constant values, with the centre of the transition propagating at  the speed of 
sound (which is Jy in our system of measurement). Further, the values of the 
variables far from the transition zone satisfy the (linearized) Rankine-Hugoniot 
relations. f 

t This should be expected, in spite of the erroneous shock structure predicted by linear- 
ized theory, since the Rankine-Hugoniot relations depend only on the existence of uniform 
flow outside the transition region, and are independent of the internal structure of the 
shock. 
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However, the width of the transition zone increases indefinitely with time like 
,/t. This leads to an estimate of the time at  which the linearized solution breaks 
down. As is well known, the thickness of a weak shock in steady flow is, on the 

X 

FIGURE 1. Density profiles in piston problem according to linearized 
Navier-Stokes equations. 

X 

FIGURE 2. Velocity profiles in piston problem according to linearized 
Navier-Stokes equations. 

present scale of measurement, of order 1/e (Taylor 1910). Since we expect the 
solution of the piston problem to yield a steady travelling shock as t -+ cg, 
we conclude that the linearized sdution begins to break down when t = O( 1/e2). 
For, when t is large compared to l/G, the linearized solution yields an over- 
thick shock. 
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A more formal argument leading to the same result may be constructed as 
follows. Underlying the linearization of equations (2.5)-(2.7) is the implicit 
assumption that p, u, T and their derivatives with respect to x and t are all of the 
same order of magnitude as 6 -+ 0. Now it is fairly easy to estimate a priori the 
order of the variables themselves; with our system of non-dimensionalization, 
they are all of order unity. However, it  is more difficult to estimate the relative 

X 

FIGURE 3. Temperature profiles in piston problem according to  linearized 
Navier-Stokes equations. 

size of the various derivatives. Though our choices for length and time scales are 
certainly not devoid of physical meaning, there is no reason to expect that, 
on these scales, the gradients of the variables are of any particular order in e. 
Thus this point must be investigated a pderiori .  

The investigation may be based on the asymptotic expressions (3.18) or, in 
the case (T = 1,  on the complete expansions given in the Appendix. From these 
results, we conclude that the first derivatives ofpo, uo, or To with respect t o  either 
x or t are of the same order for all t ,  but that the first two spatial derivatives of the 
unknowns change in relative order as t gets large; symbolically, 

for example, but 

auo 
- = 0 (E) , 
at 

(3.20) 

(3.21) 

Thus, as t + 00, the order of magnitude of the viscous terms in (2.6) and (2.7) 
decreases relative to that of the non-linear inviscid terms. When 

t = O(e-2), (3.22) 

the two classes of terms are of the same order, and linearization can no longer be 
justified. 
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4. The solution at large times 
The failure of linearization to yield a uniformly valid approximation to the 

solution suggests that the problem at large times must be attacked with singular- 
perturbation methods. First we introduce the nomenclature associated with such 
methods (Van Dyke 1964). The region of the (x, $)-plane in which t + e2 is now 
dubbed the ‘ outer region’, while the dependent and independent variables we 
have used heretofore become the ‘outer variables’. The ‘inner region’ is the one 
in which the straightforward approach breaks down; viz. where t is comparable 
to or greater than 6-2. 

We begin our search for a solution approximately valid in the inner region 
by constructing a set of ‘inner variables’ whose variations in that region are of 
order unity as e -+ 0. The dependent variables previously employed are already 
scaled properly, and so p, u and T will simply be given a superscript i to dis- 
tinguish the inner solution for these quantities from the outer solution already 
obtained (to a first approximation). However, the independent variables x 
and t must be stretched. The appropriate transformation of the time co-ordinate 
is clearly 

7 = 6%. 

For 7 thus defined is of order unity when t = O(e-2); i.e. when, according to (3.22), 
we are in the region where the linearized solution breaks down. In  transforming 
the distance variable, we reason t,hat, by the time the inner region is reached, the 
outer solution may be approximated by its asymptotic expansions (3.18). 
Thus only the interior of the developing shock wave is then of interest; outside 
everything is constant. Expecting this situation to hold true as t or 7 -+ CO, we 
therefore wish to centre the new distance co-ordinate with the shock. Further, 
it  ought to be stretched by a factor of order e so as to make the transformed shock 
thickness of order unity. Thus we let 

(4.2) 

14.1) 

5 = e(x - J(r)  t )  

be the stretched length variable. 
In  these co-ordinates, the conservation equations (2.5)-(2.7) become 

€[ - &) pj + u!] +eyp; + (piui)J = 0, (4.3) 

€[- 2 / ( Y ) U ~ + P ; + ~ ~ ~ + e 2 [ U j + ( p i ~ i ) E - u ~ 5 -  J ( ~ ) ~ ~ ~ ; + ~ ~ ~ ; I  = 0(e3), (4.4) 

- J ( Y )  Tf + (Y - 1) 9-41 
+s2[Tf-y/aT&- 2/(y)piT;+uiT;+ (7- l )p iu :+(y-  l)Tiui] = O(e3), (4.5) 

in which the magnitudes of the right sides are estimated on the assumption that 
our co-ordinate stretching has made all the derivatives of order unity. 

We seek a first approximation to the solution of equations (4.3)-(4.5) as e -+ 0. 
This task is complicated by the redundancy of the system to first order in e; 
i.e., if we multiply (4.4) by and add to it (4.3) and (4.5), the terms of order 
e cancel. 

Sichel (1959, 1963) found similar redundancies in the equations which govern 
the structure of weak plane and curved shocks in steady flow. In  each case, the 
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explanation is similar. The severe stretching of the co-ordinates in the x-direction 
makes our transformed equations inviscid to first order, since the viscous terms 
consist of higher-order spatial derivatives. Were this the essence of the trans- 
formation, the first-order equations would be those of ordinary accoustics, and 
we could express their solution in terms of left- and right-running waves. Now if 
we stipulate that the solutions of the acoustic equations be a function only of 
x- d ( y ) t ,  we find that they reduce to the first-order terms of (4.3)-(4.5). This 
suggests that, by centring the transformed co-ordinates with a right-running 
wave and stretching the time co-ordinate, we have effectively neglected left- 
running waves in the first approximation. This constitutes a constraint on the 
first-order solution, and so is responsible for the destruction of the linear in- 
dependence of the first-order terms. 

The only information contained in those terms is obtained by integrating 
them over [ and applying the damping condition (2.11) : 

J(r) Pi = (lir/(r - I)> Ti = ui* (4.6) 

These relations show that the flow is isentropic in the first approximation, 
but are not sufficient to determine its evolution in time. Moreover, they admit, 
among others, solutions whose [-derivatives are large enough to invalidate the 
assumption that the terms in the square bracketsof (4.3)-(4.5) are of order unity. 
Thus, following Sichel, we seek the additional relation required to complete the 
first approximation to the solution in the second-order terms of (4.3)-(4.5). 
We formally expand the solution in powers of e - e.g. ui = ut +EU: + . . . - and 
substitute into (4.3)-(4.5). Collecting terms of order 8, we obtain equations which 
are homogeneous and redundant in u;, pk, and T;, and find on integration that 
those variables satisfy (4.6). The equations which result on collecting terms of 
order e2 in (4.3)-(4.5) are similarly redundant in uf, p:, and Ti, but are inhomo- 
geneous. Thus they can have only trivial solutions unless a certain relation 
among the inhomogeneous terms holds, which leads us to conclude that 

e2[pf + J(y) u5 + Tt + uipf + uiTi + ( y  - 1) Ti$ 

+ . \ l ( ~ ) T i & + J ( y ) ~ ' ~ ~ -  J ( Y ) u ~ & - ~ / ~ T & ]  = O(8) (4.7) 

is the missing condition on the inner solution we have been seeking.? 
Substitution of (4.6) into (4.7) shows that ui satisfies Burgers's equation 

u: + $(y + 1) u".f = +&&, (4.8) 

in the first approximation, where p is defined in (3.19). This equation was re- 
garded by Burgers (1948) as a mathematical model of the equations governing 
turbulence. He also noted that it could be used as a model equation for shock- 
wave formation, but it is seen here that the connexion between (4.8) and shock- 
wave theory is more definite than that. 

t To be precise, what the indicated manipulations show is that u& pi, and Ti satisfy 
(4.7) without the O ( @ )  error term. Since we are only interested in a first approximation to 
the inner solution, we have dropped the subscript zero on those variables so as to avoid 
an over-cumbersome notation. 
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The role of Burgers’s equation in the theory of shock-wave development has 
previously been shown by L.C.&T., Lighthill (1956) and Hayes (1960). Their 
derivations, however, are more complicated than the present one, as the use of 
stretched co-ordinates obviates the necessity for some rather intricate order- 
of-magnitude estimates.? Moreover, since they do not attempt to connect the 
large- and small-time solutions, they are not able to estimate the time at  which 
(4.8) becomes valid, and they experience difficulties in ordering the x- and t- 
derivatives. L.C. &T., who treated only the infinite-Prandtl-number case, simply 
assumed that uf < uz. Noting the existence of a steady-state solution, they ex- 
pected this approximation to improve as t -+ 03. Hayes made a similar approxi- 
mation, while Lighthill made an order-of-magnitude analysis of sound-wave 
propagation. 

Boundary conditions for equation (4.8) may be obtained by matching the 
inner and outer solutions in the sense of Kaplun & Lagerstrom (Van Dyke 
1964). Symbolically, we assume that 

(Ui). = (U0)i. (4.9) 

That is, if the inner solution is re-expressed in outer variables by means of (4.1) 
and (4.2) and re-expanded in E for fixed x and t ,  the result ought to be the same as 
if the outer solution were put in inner variables and re-expanded for fixed ( 
and r .  But, from (4.1), it is clear that, if we rewrite u o  in terms of 6 and r and let 
E --f 0, we are effectively making an asymptotic expansion of uo for large t. There- 
fore’from (3.18), (4.1), (4.2) and (4.9), 

(ui)o = +erfc{(/J(2,!l~)). (4.10) 

Similarly, taking the outer limit of the inner solution is the same as letting 
7 --f 0. Thus, from (4. 10)’ we get an initial condition on the inner solution: 

ui((,O) = 0 for 6 > 0, 

= 1 for 6 < 0. 

(4.11) 

Equation (4.11) shows that, in the final stages of shock formulation, the piston 
problem is indistinguishable from a corresponding shock-tube problem. This 
fact was deduced by Lighthill (1956) on physical grounds. He reasoned that 
‘the waveform gets away from the piston in a time negligible with the time scale 
of the process of shock-wave formation in which we are interested’, so that one 
may as well study an initial-value problem as the corresponding boundary-value 
problem. 

The general initial-value problem for Burgers’s equation was solved by Hopf 
(1950) and Cole (1951); see also Lighthill (1956) and Hayes (1960). The key step 
is the introduction of a function $((, r ) ,  to which ui is related by 

(4.12) 

t While this paper was in preparation, J.-P. Guiraud informed the authors in private 
communication that he has shown Burgers’s equation to govern the final stages of shock- 
wave formation in the shock-tube problem by employing techniques similar to those used 
here. Still mother derivation, which is independent of the mechanism used to generate 
the shock, :has been worked out by M. Lesser, who also uses co-ordinate stretching. 
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Substituting this into (4.8) and (4.11) and integrating over 4, we find that $ 
is a solution of the heat equation 

$, = BP$& (4.13) 
subject to the initial conditions 

$ ( L O )  = exP(-(Y+1)5/2P) for 5 < 0, 

= 1  for 6 > 0, (4.14) 

where we have taken care to make the initial values continuous through E = 0. 
The solution can then be carried out by distributing heat sources along the [-axis 
(see, for example, Sommerfeld 1964), and, after substituting the result back into 
(4.12), weget 

As noted above, the equation and initial conditions which govern Lighthill’s 
(1956) solution of the piston problem are the same as (4.8) and (4.11). Thus, 
though our derivation differs greatly from his, (4.15) is also his result. As Light- 
hill notes, the solution is asymptotic to Taylor’s (1910) result for the structure of 
a weak shock. 

(4.16) 

where c = &+*s(y+ 1) (4.17) 

is the second approximation to the Rankine-Hugoniot result for the speed of a 
weak shock. Further, the time required for the solution to approach (4.17) 
to any specified degree of accuracy is clearly of order unity when expressedin the 
inner variables. Thus, the time required for the formation of a weak shock is of 
order c2 collision times, again as Lighthill (1956) noted. 

If we now follow the prescription which accompanies (4.9)’ we find the leading 
term of the outer expansion of (4.15) to be 

(ui)O = Serfc (5- .J(y)t>/J(2,&). (4.18) 

Though (4.10) and (4.18) are identical, it should be noted that, in setting up the 
initial-value problem for the inner solution, we did not use (4.10) itself, but only 
its value a t  7 = 0. In Van Dyke’s (1964) nomenclature, we assumed only the ‘limit 
matching principle ’, but have found a posteriori that our solution satisfies the 
more demanding ‘asymptotic matching principle ’. While the method of matched 
asymptotic expansions is in such wide use that perhaps we ought not to worry 
about the lack of a rigorous mathematical basis for the matching principle, this 
small check on our procedure is nevertheless comforting. 

A further confirmation of our use of the matching principle was obtained by 
solving the system 

vt+(ev+c)vz = $Sv,, for x > 0, t > 0, (4.19) 

w(0,t) = 1 for t > 0,  (4.20) 

v(x,O) = 0 for x > 0,  (4.21) 
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which may be regarded as a mathematical model of the piston problem?. That 
is, the termeuu, in (4.19) represents the non-linear convective terms in the Navier- 
Stokes equations which tend to steepen waves, while @vz, represents the dif- 
fusive viscous terms, so that (4.19) contains terms which can be identified with 
the principal physical influences present in the real problem. 

Since (4.19) is related to Burgers’s equation (4.8) by a co-ordinate transforma- 
tion, a substitution like (4.12) can be found which reduces (4.19) to the heat 
equation. The solution is facilitated by using Laplace transforms with respect to 
time, and the inversion of the transforms can be carried out in closed form without 
difficulty, By expanding u ( r ,  t )  in powers of E ,  we construct an outer expansion 

X 

FIGURE 4. Velocity profiles in piston problem according to Navier-Stokes equations ; 
_-- , linearized solution; __ , composite solution ( E  = 0.2). 

whose leading term resembles (3.18). The inner expansion is obtained by putting 
the exact solution in terms of ~ ( z - c t )  and e2t before expanding in E, and the 
leading term of the result looks like (4.15). Details of the solution are not im- 
portant for present purposes. Here we need only note that the leading terms of 
the inner and outer expansions of the exact solution of the model problem satisfy 
the matching principle (4.9). 

Because of the matching, the composite solution 

uc = ui+uo- ( ua ’1 0 (4.22) 

is asymptotically valid as e + 0 in both the inner and the outer regions, and, be- 
cause of our indirect confirmation of the matching principle, we are confident that 

t A model of the piston problem which may be obtained from ours by letting c -+ 0 
in (4.19) was solved by J. D. Cole (Lagerstrom 1964). However, his case is not as appropri- 
ate as ours for studying the behaviour of the solution for small E .  In  particular, if e = 6 = 0, 
(4.19)-(4.81) yield a right-running ‘acoustic wave’ at 5 = ct. while in Cole’s case the wave 
is coincident with the piston. 
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this solution is a uniformly valid first approximation for all time. The solution 
is illustrated in figure 4 for the case u = 1, y = *, and e = 0.2. 

This paper is based on a portion of J.P.Moran's doctoral research, which 
was supported in part by a Cornell Aeronautical Laboratory Fellowship. An 
abstract of the paper was presented at  the Gesellschaft fur Angewandte Mathe- 
matik und Mechanik, Vienna, 20-24 April 1965. The authors are pleased to 
acknowledge many illuminating discussions of their results with W. R. Sears, 
J.-P. Guiraud, M. Lesser, A. R. Seebass and D. Turcotte. The calculations were 
performed on the Cornell Computing Center CDC 1604 computer, with the sup- 
port of the U.S. Air Force Office of Scientific Research of the Office of Aerospace 
Research under contract AF  49(638) -1346. 

Linearized solution for CT = 1 
Appendix 

ui(z, t )  = exp ( - x2/4t) Re 

7-1 pi(x, t )  = - - exp ( - 
Y 

Ti(z, t )  = Y - 1  - exp ( - z2/4t) Im ( w (J( __ Yt ) - " ) ] + ' J = ~ F , .  (A3) Y 7-1 2 4  .Jr 
(A 4) Here 

while FPl, Fo, and Fl have the series expansions 

w(z)  EZ e-8' erfc (iz) 

(A51 
in which iqerfc x is the qth iterated integral of the complementary error function 
(Abramowitz & Stegun 1964). 
The asymptotic behaviour of the E; as t --f co may be obtained from 

F,(x, t )  N 4 erfc Q + - -___- aL(zt)-*m( - 2)-"Hm(95) 

in which 

H,'(+) is the Hermite polynomial of nth degree (see, for example, Abramowitz & 
Stegun 1964), and the a; are given by 

a5, = - 1 for I = - 1 ,0 ,1 ,  

an -1 - - 2-n-1- 2 ,/(y - 1) Im [{I -I- i ( y  - l)-*}-n-1] for n 2 0, 

a: = a;l-a;:l for n 2 0, 

ah =a$-a;-,  for n > 0. 
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